- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Cantrell, Ryan (1)
-
Elder, Charles A. (1)
-
Grimm, David F. (1)
-
Janis, Brett R. (1)
-
Jones, Clara (1)
-
Kopechek, Jonathan A. (1)
-
Menze, Michael A. (1)
-
Moore, John (1)
-
Pantalos, George (1)
-
Shacklette, Sienna (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Medical planning for space exploration is based on the “floating” blood bank model to store life-saving red blood cells (RBCs) for emergencies. The “floating” blood bank approach is not sufficient in cases where multiple crewmembers are affected by space anemia. In these situations, long-term preserved RBCs will be vital to guarantee the health and safety of crew members. Transfusable RBC units can only be refrigerated for 42 days or frozen at -80 C. However, storing frozen RBCs at -80 C is challenging during the confined condition of long-duration space flight. Freeze-dried, viable RBCs would be an appropriate alternative because they can be stored without cooling, are predicted to have a shelf-life of years, and could be transfused immediately after rehydration. This study explores if freeze-dried RBCs can be rehydrated and transfused in reduced gravity with similar outcomes in recovery as observed at Earth gravity. Experiments analyzing freeze-dried RBC recoveries, rehydration fluid dynamics, and transfusion flow rates were analyzed utilizing an experimental glovebox in simulated 0 g during parabolic flights. RBC recoveries and rehydration fluid dynamics for volumes of 5 mL and 10 mL were the same in simulated 0 g compared to results obtained at 1 g. A clinically acceptable range of flow rates for slow intravenous infusion and rapid fluid resuscitation was possible with the simple augmentation of a hand-pumped clinical pressure bag around a unit of rehydrated RBCs. The results demonstrate the potential feasibility of using freeze-dried cells for healthcare during deep-space exploration.more » « less
An official website of the United States government
